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Abstract
The efficient design of a diverse array of novel T
cell receptors (TCRs) would transform the field of
immunology, providing a vastly expanded search
space from which new immunotherapies can be
designed. However, data on TCRs is limited and
often biased. Recent advances in diffusion models
have proven to be effective in designing biological
sequences that are diverse and specific to a given
context. We investigate whether a pre-trained se-
quence diffusion model, EvoDiff, can be used to
zero-shot generate TCR CDR3 sequences, con-
ditioned on variable and constant chains. The
EvoDiff model generates CDR3s that do not reca-
pitulate the native TCR distribution in humans but
have high structural fidelity and diversity, show-
ing potential for synthetic TCR generation.

1. Introduction
T cell receptors (TCRs) are key mediators of adaptive im-
munity: they recognize short antigen peptides presented
on major histocompatibility complex (MHC) surface pro-
teins, leading to T cell activation and downstream effector
T cell functions (Shah et al., 2021). Improving de novo
design of TCRs would enable the development of more ef-
fective and robust immunotherapies for various diseases,
such as cancer. For example, enhanced TCR design could
be used to produce customized TCR-based chimeric antigen
receptor T-cells (CAR T cells) with precise tropism towards
a desired disease-specific epitope, thereby allowing initia-
tion and coordination of a highly specific immune response
(Poorebrahim et al., 2021).

TCRs comprise an extracellular α and a β chain (Figure
1), each of which contains a variable and constant domain.
The three complementarity-determining regions (CDRs),
located in the variable domains, are where the TCR binds
the antigen and, consequently, are the source of the majority
of the sequence variation among TCRs (Sun et al., 2021). As
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a result, efforts to design TCRs have focused on designing
CDRs, and in particular, CDR3 - the most variable CDR.

Figure 1. TCRs are key mediators of adaptive immunity.

Machine learning-based models have been increasingly used
for the design of biomacromolecules, including TCRs, due
to the high experimental costs and durations associated with
the synthesis and analysis of these molecules. While the
field of in silico, de novo antibody design has experienced
many significant developments over the past few years, de
novo TCR design is still relatively unexplored despite the
structural similarities between TCRs and antibodies. One
reason for this is TCR sequencing data is rather limited
and biased. Most TCR sequence databases consist of only
β chains, and paired α-β chain data is rare. Additionally,
databases contain TCR repertoires from limited samples
(e.g. 24 people for TCRdb (Chen et al., 2021)) which would
heavily bias a generative model trained on this data. Thus,
we evaluate whether general protein design models could
be leveraged in zero-shot fashion for TCR generation.

A diverse repertoire of TCRs is generated in vivo via a mech-
anism called V(D)J recombination. TCR variable domain
sequences comprise of V (variable), D (diversity), and J



Figure 2. We construct a joint distribution of V and J sequences and a distribution over CDR lengths from true human TCRs. To generate
a CDR3 sequence using EvoDiff, we sample a V/J sequence pair and CDR3 length to condition the generation. EvoDiff is applied without
fine-tuning to generate 500 CDR3 sequences.

(joining) regions, with the CDR1 and CDR2 sequences in
the V region and the CDR3 sequence spanning part of the
V region and all of the D and J regions. Recently, diffusion
models have been used to generate highly diverse and des-
ignable proteins, both for de novo design and to re-engineer
particular domains (Watson et al., 2023). We hypothesize
that diffusion models can effectively capture the vast se-
quence space of TCRs resulting from V(D)J recombination.

We investigate the ability of sequence diffusion models,
conditioned on TCR variable and constant chains, to design
new CDR3 regions in a zero-shot manner. In particular,
we analyze the performance of EvoDiff (Alamdari et al.,
2023), a recent discrete diffusion model for controllable
protein generation, in designing realistic CDR3 sequences.
By modeling the stochastic process of V(D)J recombination
and leveraging EvoDiff in a zero-shot manner, enabling a
less biased exploration of a wide range of potential TCR
sequences, we hope to generate diverse TCR designs.

2. Related Work
2.1. Diffusion Models for Protein Design

Many recent works have developed diffusion models for
general protein design tasks, including motif scaffolding,
binder design, and shape-conditioned design (Watson et al.,
2023; Wu et al., 2024). Many of these models rely on struc-
ture; however, the amount of structural data on TCRs is very
limited. Hence, we focus on EvoDiff, which enables con-
trollable protein generation in sequence space while main-

taining structural plausibility in its predictions. Critically,
EvoDiff excels at designing proteins with disordered regions.
Since TCR CDR regions are somewhat disordered, we hy-
pothesize that a sequence diffusion model is well-suited for
this task.

2.2. Models for CDR Design

While some deep learning-based methods have been de-
veloped for antibody CDR design (Jin et al., 2021), there
have been relatively fewer methods for TCR CDR design.
The most common approach used to date has involved train-
ing VAE models on TCR sequencing data to model the
native TCR repertoire distribution (Davidsen et al., 2019;
Sidhom et al., 2021). These supervised variational autoen-
coder (VAE) models have shown a strong ability to reca-
pitulate the native TCR sequence distribution and are capa-
ble of learning low-dimensional embedding representations
of TCR/CDR motifs. However, because these models are
trained to recapitulate the TCR repertoire distribution ob-
tained from a limited patient sample set, they may not be
effective sampling tools for de novo enhanced TCR design;
the native distributions they are fitted to can be biased due
to prior disease exposure and/or may not be representative
of the full theoretical diversity of TCR sequences. Addition-
ally, as mentioned earlier, there is very limited availability
of TCRα chain sequencing data, which is perhaps why both
of the TCR VAE examples cited earlier limited their analysis
to just the TCR β chain.



3. Methods
3.1. Sampling from EvoDiff

As shown in Figure 2, we begin by creating a joint dis-
tribution of V and J sequence co-frequency, as well as a
distribution of CDR3 lengths, from which we can sample
condition sequences. To construct these distributions, we
use the TCRdb database (Chen et al., 2021), which contains
117, 813 unique TCR sequences, annotated by V, D, and J
regions as well as clone fraction. We sample 500 condition
sequence pairs and use EvoDiff to inpaint a CDR3 sequence
for each.

3.2. Supervised Learning Baseline

To baseline against a supervised method, we train a model
with a simple long-short LSTM encoder layer and an autore-
gressive LSTM decoder layer to predict CDR3 sequence
given the V region sequence. The model was trained on
2, 910 true V-region, CDR3 pairs from VDJdb (Shugay et al.,
2018) and supervised with a standard cross entropy loss until
convergence. We sample 500 sequences following the same
V-region and CDR length distribution as EvoDiff sampling.

3.3. Structural Fidelity

One of the most important properties that a TCR must
have is structural fidelity. Particularly, the CDR3 loop
must assume specific three-dimensional structure that al-
lows for effective antigen recognition and binding. We eval-
uate whether the EvoDiff-generated CDR3s assume realistic
structures despite being sampled in a zero-shot manner. We
fold 100 randomly selected EvoDiff-generated sequences
using ESMFold (Lin et al., 2023), folding the generated
CDR3 scaffolded into the sampled V/J regions and β con-
stant region. We report the average CDR3 pLDDT across
samples. As a positive control, we sample 100 true TCRs
from the TCRdb-derived distribution. We also compare
against the LSTM baseline.

3.4. Sequence Diversity

Next, we evaluate the diversity amongst the generated set
of sequences, comparing EvoDiff and the LSTM baseline.
We measure similarity between each pair of generated se-
quences by summing the BLOSUM-62 scores for corre-
sponding amino acid pairs across the entire length of the
aligned sequences and dividing by the length of the align-
ment. We report the average pairwise similarity across
generated samples, so lower scores indicate higher diversity.

3.5. Sequence Fidelity

Finally, we evaluate how realistic the generated CDR se-
quences are with respect to a distribution of native hu-

man TCR β chains. Although we do not expect EvoDiff-
generated sequences to score highly on this metric, given
that we employ the model in a zero-shot manner, we seek
to evaluate how strongly the provided V/J context steers the
model towards human-like CDR3 sequences.

To evaluate sequence fidelity, we employ the Optimized
Likelihood estimate of immunoGlobin Amino-acid se-
quences (OLGA) algorithm (Sethna et al., 2019). The
OLGA algorithm calculates the probability of a particular
CDR3 sequence under a stochastic model of V(D)J recom-
bination. Particularly, the probability of a generation event
E is determined by the probability of observing the given
V , D, and J gene templates along with a given number of
nucleotide deletions dV , dJ . These probabilities are com-
puted under distributions defined by true human β-chain
TCR variable regions, as shown in the equation below. The
probability of a particular CDR3 sequence is given by the
sum over the probabilities of all possible generation events
that could have resulted in the observed sequence.

P (E) = PV (V )PDJ(D,J)PdelV (dV |L)PdelJ(dJ |J)

P (a1...aL) =
∑

E→σ∼a

P (E)

4. Results
We evaluate the EvoDiff-generated sequences along three
axes: (i) structural fidelity, (ii) sequence diversity, and (iii)
sequence fidelity which are described in the subsequent
sections.

4.1. Structural Fidelity

Table 1 shows the pLDDT of structures obtained by folding
EvoDiff-generated sequences, LSTM-generated sequences,
and true TCRs. Given that the pLDDT of EvoDiff-generated
CDR3s is within the error bars of both LSTM-generated
and true TCR sequences, it indicates that the structures of
EvoDiff-generated CDR3s are realistic compared to true
TCRs. EvoDiff is also competitive with the supervised
LSTM baseline, even though it is a zero-shot method.

Table 1. Comparison of Models on Structural Fidelity

Model Avg. CDR3 pLDDT

EvoDiff 57.54± 4.98
LSTM 61.25± 5.41
True TCRs 61.55± 5.20

We conduct further analysis on the pLDDT values as a func-
tion of sequence position, as shown for a sampled protein in
Figure 3. We observe that while the structural confidence
goes down in the generated CDR region, there are regions
of the constant domain that have lower confidence. We



conclude that this level of structural uncertainty is inherent
to disordered regions like CDR loops, matching the trends
observed in true TCR structures.

Figure 3. plDDT as a function of sequence position. There is some
structural uncertainty in the generated CDR loop and segments of
the constant region.

4.2. Sequence Diversity

Table 2 compares the average pairwise similarity scores
of EvoDiff and the LSTM. Lower similarity scores imply
higher diversity among the generated sequences, meaning
that the sequences produced by EvoDiff are more varied
compared to those from the LSTM model. This increased
diversity in the sequences generated by EvoDiff is promising
as it mirrors the natural variability found in the immune
system, allowing for a broader exploration of potential TCR
behaviors and interactions.

Table 2. Comparison of Models on Average Pairwise Similarity
Score

Model Average Pairwise Similarity

EvoDiff 37.18
LSTM 39.91

4.3. Sequence Fidelity

As shown in Table 3, we report the average OLGA proba-
bility across generated sequences. As expected, true TCRs
have the highest probability. We find that LSTM-generated
sequences are more probable than EvoDiff-generated se-
quences. This shows that zero-shot generalization from
general protein design to TCR generation is difficult. Al-
though the LSTM only receives context from the V region,
EvoDiff is not able to generate sequences of higher fidelity,
highlighting a limitation of zero-shot generation.

Table 3. Comparison of Models on Sequence Fidelity

Model Average OLGA Log Probability

EvoDiff −27.97
LSTM −11.75
True TCRs −7.28

5. Conclusions
While EvoDiff finds it difficult to zero-shot generalize to the
distribution of true TCR sequences, we show that EvoDiff
can generate TCR CDR3s with high structural fidelity and
diversity. By enabling the model to explore the inherently
vast sequence space of TCRs, we show that this method can
effectively sample synthetic TCRs in low-data settings.

The ability to maintain a high degree of structural fidelity
while generating a wide variety of TCR sequences is es-
sential. This ensures that the synthetic TCRs produced by
EvoDiff are not only diverse but also maintain the neces-
sary structural features that could be crucial for them to
maintain their in vivo effector function. By enabling explo-
ration across a vast spectrum of TCR sequences, EvoDiff
facilitates a comprehensive understanding and discovery
of potentially effective TCRs, even when empirical data is
scarce. This opens up new avenues for investigating TCR
behaviors and developing novel therapeutic approaches in
immunology.

Code Availability
The code and data for the experiments described in this pa-
per is available at https://github.com/divnori/
tcr_gen.

https://github.com/divnori/tcr_gen
https://github.com/divnori/tcr_gen


References
Alamdari, S., Thakkar, N., van den Berg, R., Lu, A. X., Fusi,

N., Amini, A. P., and Yang, K. K. Protein generation with
evolutionary diffusion: sequence is all you need. bioRxiv,
2023.

Chen, S.-Y., Yue, T., Lei, Q., and Guo, A.-Y. Tcrdb: a com-
prehensive database for t-cell receptor sequences with
powerful search function. Nucleic Acids Research, 2021.

Davidsen, K., Olson, B. J., DeWitt, William S, I., Feng, J.,
Harkins, E., Bradley, P., and Matsen, Frederick A, I. Deep
generative models for t cell receptor protein sequences.
eLife, 8, sep 2019. doi: 10.7554/eLife.46935.

Jin, W., Wohlwend, J., Barzilay, R., and Jaakkola, T.
Iterative refinement graph neural network for anti-
body sequence-structure co-design. arXiv preprint
arXiv:2110.04624, 2021.

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W.,
Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.
Evolutionary-scale prediction of atomic-level protein
structure with a language model. Science, 379(6637):
1123–1130, 2023.

Poorebrahim, M., Mohammadkhani, N., Mahmoudi, R.,
Gholizadeh, M., Fakhr, E., and Cid-Arregui, A. Tcr-
like cars and tcr-cars targeting neoepitopes: an emerging
potential. Nature, Cancer Gene Therapy, 2021.

Sethna, Z., Elhanati, Y., Jr., C. G. C., Walczak, A. M., and
Mora, T. Olga: fast computation of generation probabil-
ities of b- and t-cell receptor amino acid sequences and
motifs. Bioinformatics, 2019.

Shah, K., Al-Haidari, A., Sun, J., and Kazi, J. U. T cell
receptor (tcr) signaling in health and disease. Nature,
Signal Transduction and Targeted Therapy, 2021.

Shugay, M., Bagaev, D. V., Zvyagin, I. V., Vroomans, R. M.,
Crawford, J. C., Dolton, G., Komech, E. A., Sycheva,
A. L., Koneva, A. E., Egorov, E. S., Eliseev, A. V., Dyk,
E. V., Dash, P., Attaf, M., Rius, C., Ladell, K., McLaren,
J. E., Matthews, K. K., Clemens, E. B., Douek, D. C.,
Luciani, F., van Baarle, D., Kedzierska, K., Kesmir, C.,
Thomas, P. G., Price, D. A., Sewell, A. K., and Chudakov,
D. M. Vdjdb: a curated database of t-cell receptor se-
quences with known antigen specificity. Nucleic Acids
Research, 2018.

Sidhom, J.-W., Larman, H. B., Pardoll, D. M., and Baras,
A. S. Deeptcr is a deep learning framework for re-
vealing sequence concepts within t-cell repertoires. Na-
ture Communications, 12(1), Mar 2021. doi: 10.1038/
s41467-021-21879-w.

Sun, Y., Li, F., Sonnemann, H., Jackson, K. R., Talukder,
A. H., Katailiha, A. S., and Lizee, G. Evolution of cd8+ t
cell receptor (tcr) engineered therapies for the treatment
of cancer. cell, 2021.

Watson, J. L., Juergens, D., Bennett, N. R., Trippe, B. L.,
Yim, J., Eisenach, H. E., Ahern, W., Borst, A. J., Ragotte,
R. J., Milles, L. F., Wicky, B. I. M., Hanikel, N., Pellock,
S. J., Courbet, A., Sheffler, W., Wang, J., Venkatesh, P.,
Sappington, I., Torres, S. V., Lauko, A., Bortoli, V. D.,
Mathieu, E., Ovchinnikov, S., Barzilay, R., Jaakkola,
T. S., DiMaio, F., Baek, M., and Baker, D. De novo
design of protein structure and function with rfdiffusion.
Nature, 2023.

Wu, K. E., Yang, K. K., van den Berg, R., Alamdari, S.,
Zou, J. Y., Lu, A. X., and Amini, A. P. Protein structure
generation via folding diffusion. Nature Communications,
15(1):1059, 2024.


