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Abstract

Protein conformational ensembles offer valuable insights into protein function
and reveal potential drug targets. In this study, we fine-tune ESMFold, a widely-
used protein folding model, to predict conformational trajectories using odds ratio
preference optimization (ORPO). Our approach shows initial success in generating
temporally-consistent trajectories that accurately predict residue flexibility and
capture the dominant conformations.

1 Introduction

Proteins, a diverse class of biological macromolecules, perform a wide range of functions critical
for cellular pysiology. Understanding protein structures is essential for determining these functions.
Recent advances in protein structure prediction, enabled by models like AlphaFold and ESMFold
[3, 4], have marked significant progress. However, these models primarily predict static structures,
whereas proteins are dynamic molecules whose movements are integral to their function. This study
aims to repurpose existing protein folding models, specifically ESMFold, to generate conformational
trajectories. We modify ESMFold’s architecture and finetune the model using odds ratio preference
optimization (ORPO) [1]. Specifically, we combine a supervised behavior cloning loss, using
molecular dynamics simulations as expert data, with an odds ratio-based preference alignment loss
to generate trajectories that are temporally-consistent, biophysically accurate, and conformationally
diverse.

2 Methods

2.1 Problem Formulation

Consider a protein structure which is given by a 3D point cloud s0 ∈ RN×37×3. N is the number
of amino acid residues in the protein sequence, and each residue’s geometry is given in atom37
format where each of the 37 slots corresponds to a heavy atom of a given name. We are also given
the protein’s sequence which does not change over the course of our task. We aim to predict a
trajectory of states [s1, ..., sT ] given s0, which describes how this protein structure evolves over time
in a room-temperature water solution with no other ligands. Thus, our state space is continuous,
consisting of all possible point clouds with the given dimensionality. The action space consists of
modifying any subset of the protein’s atomic positions in 3D space, so this space is also continuous
with dimensionality RN×37×3. Given the nature of our problem, st+1 is trivially given by st and at,
so we parameterize our policy such that it directly predicts a distribution over st+1 given st.

2.2 Protein Folding Model as a Trajectory Generator

In recent years, incredible progress has been made on the task of protein folding. Deep learning models
such as ESMFold [4] has been trained to accept protein sequences and predict all-atom 3D coordinates
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of single structures with high accuracy. ESMFold has gained considerable popularity because it is
significantly faster than AlphaFold [3] while only slightly underperforming in terms of structure
prediction accuracy. As shown in Figure 1, ESMFold begins by embedding a protein sequence with
the ESM-2 language model which is pretrained on a masked language modeling objective. The
resulting embedding is processed by the folding trunk (48 triangular self-attention blocks) which
updates the internal representation of the protein. The output is processed by an equivariant structure
module, from which the model predicts an all-atom structure along with confidence measures.

Figure 1: Architecture of ESMFold model with additional embedding module.

Folding models hold rich information about protein structures in their weights, but they are not
trained to predict several conformations. Inspired by recent methods that adapt these models for
conformational ensemble prediction [2], we hypothesize that pretrained protein folding models can
be finetuned towards conformational trajectory prediction. Thus, we initialize our policy π(st+1|st)
with pretrained weights from ESMFold which has been trained on proteins deposited in the Protein
Data Bank (PDB) before May 1, 2020. To adapt ESMFold for trajectory prediction, we add an
extra input embedding module which conditions st+1 predictions on st, as shown in Figure 1. The
architecture of this module is similar to AlphaFold’s template embedding stack, involving triangular
attention and multiplicative updates.

2.3 Aligning Folding to MD Trajectories

We now focus on the problem of finetuning this model for trajectory prediction, given ground-truth
molecular dynamics (MD) trajectory data. There are many potential approaches to do this. The
simplest method would be to treat MD simulations as expert trajectories and apply supervised
finetuning (SFT, i.e. behavior cloning). We hypothesize that this approach could work well but may
sacrifice diversity if employed alone. Inspired by recent success in the language modeling domain, we
hypothesize that methods rewarding the "winner" between two independently sampled completions
st+1|st could perform well. ORPO applies such as an approach and outperformed both RLHF and
DPO in the language domain being significantly simpler than analogous methods [1]. Specifically,
ORPO combines a supervised fine-tuning loss term with a term that maximizes the odds ratio between
the likelihood of generating the favored completion ŝ

(w)
t+1 and disfavored completion ŝ

(l)
t+1. Our full

objective function is given below:

LTRPO = E
(pt−1,p̂

(w)
t ,p̂

(l)
t )

[LSFT + λLOR]

where LSFT is the cross-entropy loss calculated between the distogram logits and ground truth
distogram distribution of the true protein conformer. The odds ratio term takes the form

LOR = − log σ

(
log

oddsθ(ŝ
(w)
t |st−1)

oddsθ(ŝ
(l)
t |st−1)

)
, oddsθ(st|st−1) =

Pθ(st|st−1)

1− Pθ(st|st−1)

where ŝ
(·)
t is the predicted protein conformation given st−1 as the previous one. Winner is selected

by the comparison of the MSE between the sampled distogram of the proposed conformer and true
conformation st.
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The central question now is how to sample the completions. We make the observation that the folding
trunk predicts logits over a distogram, which is a pairwise matrix of distances between Cα atoms
discretized into buckets. We can sample over this predicted distribution to arrive at two potential
next-state backbone structures. The gradients propagate from the distogram logits through the folding
trunk and extra input embedding module. We keep the ESM-2 language model frozen, and the
structure module is not updated. We finetune the model for 400 gradient steps across 7 NVIDIA
A-6000 GPUs taking significantly smaller time compared to the ESMFlow method.

3 Experiments

For all experiments, we use the ATLAS dataset [6] which contains MD trajectories for 1400 proteins.
We apply a temporal split to create train, validation, and test sets (same split as used in prior work
[2]). The motivation for a time-based split comes from prior work in ML for structural biology
[5]. All metrics are reported on the test set. We compare our method with two baselines. First, we
compare a recently proposed method named ESMFlow [2] which generates protein conformational
ensembles by finetuning ESMFold on the generative flow matching objective. While this method
cannot simulate trajectories with temporal consistency and instead predicts unordered states, we
can compare the diversity and accuracy of conformational ensembles. Second, a simple but strong
baseline is assuming that the protein simply stays static throughout the trajectory which we refer to
as “Void MD." We seek to answer three experimental questions, each of which we describe below.

3.1 Temporal evolution of protein structure

Given the first frame of a true MD trajectory, we assess whether our method can generate a temporally
consistent set of protein structures. Each frame-to-frame transition should resemble a 1 ns step of
MD simulation, and ideally, the accuracy of each state should not diminish significantly over time.

To measure this, using our method, we sample 100-state trajectories given the true first frame of
expert trajectories. We do not compare ESMFlow on this metric because it was not designed to
generate temporally consistent trajectories. Void MD assumes that the true first frame is repeated 100
times through the trajectory. We compare these methods on the average RMSE aggregated across
trajectory

RMSEtemporal =
1

T

T∑
i=1

RMSE(X̂i,Xi)

where X̂i corresponds to the predicted all-atom coordinates at step i and Xi is a set of true coordinates
at the same step.

We find that ESMFold-ORPO has a RMSEtemporal of 6.859 compared to 2.411 for Void MD. This
indicating that perhaps the error grows as we deviate away from the first frame, prompting further
analysis. We plot RMSEtemporal as a function of frame index and show two representative examples
below.

Figure 2: Temporal RMSE over time.
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We observe that the temporal RMSE plateaus, showing that the error does not grow and ESMFold-
ORPO can generate temporally consistent trajectories over long time horizons.

3.2 Amino acid flexibility

Next, we evaluate whether our method can accurately predict the flexibility of each residue. To
measure this, we report the Pearson correlation between the Root Mean Squared Fluctuation (RMSF)
of residues in true and predicted trajectories. Specifically, we report

RMSF corr = PearsonR(RMSF true, RMSF pred), RMSF =

√√√√ 1

T

T∑
t=1

(Xi − X̄)2

where X̄ is the average conformation in the trajectory, and Xi is a state at timestep i. The RMSF
correlation values for our method and the baselines is shown below.

Table 1: Comparison of Models on Per-Target RMSF Correlation

Model RMSF Correlation (r)
Void MD 0.167
ESMFlow-Templates 0.402
ESMFold-ORPO 0.390

We observe that ESMFold-ORPO almost matches the performance of ESMFlow-Templates, signifi-
cantly outperforming Void MD.

3.3 Coverage of conformational space: case-study

Finally, we evaluate whether ESMFold-ORPO can cover the dominant conformational states present
in the ground-truth MD trajectory. To identify dominant conformational states in the ground-truth
trajectories, we plot the pairwise similarity between the true conformers’ distance matrices on a
heatmap. Highly correlated states (shown in red) are likely part of the same functional state. We define
that a predicted conformer catures a particular true state if the correlation between their pairwise
distance matrices is ≥ 0.8. On the heatmap, we mark the true states for which a predicted conformer
captures its geometry along the diagonal with a black dot.

We focus on the cytochrome enzyme as a case-study, a common drug target for skin conditions. This
protein has two dominant states, and this conformational change is critical for its function. The
heatmap for this protein is shown below, with ESMFlow predictions marked on the left panel and
ESMFold-ORPO marked on the right.

Figure 3: Coverage of conformational space for cytochrome enzyme.

Evidently, ESMFold-ORPO is able to capture both conformational states reliably, compared to
ESMFlow which primarily predicts thermal fluctuations around the starting conformation. We
observe this trend with many other proteins as well, indicating that perhaps ESMFold-ORPO can be
used to generate ensembles of higher diversity. This analysis will be the subject of future work.
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