Divya Nori

EDUCATION

Massachusetts Institute of Technology May 2025 M.Eng. Electrical Engineering and Computer Science GPA: 5.00/5.00 Massachusetts Institute of Technology May 2025 GPA: 4.94/5.00 B.S. Electrical Engineering and Computer Science, Minor Mathematics Milton High School May 2021 GPA: 4.00/4.00 Valedictorian, U.S. Presidential Scholar

Coursework

Graduate CS Courses: Computer Vision, Generative AI for Biology, Sensorimotor Learning, Symmetry and its Applications to ML, TinyML & Efficient Deep Learning

Undergraduate CS Courses: Algorithms (I & II), Computational Biology, Embedded Systems, Machine Learning, Natural Language Processing, Programming (I & II), Signal Processing

Undergraduate Math/Biology Courses: Biostatistics, Calculus I & II, Differential Equations, Genetics, Linear Algebra, Organic Chemistry, Probability, Statistics

P

PUBL	LICATIONS	
	RNAFlow: RNA Structure & Sequence Design via Inverse Folding-Based Flow Matching Divya Nori, Wengong Jin	2024
	In 41st International Conference on Machine Learning (ICML)	
	In GEM Workshop at the 12th International Conference on Learning Representations (ICLR)	
	Evaluating Zero-Shot Scoring for In Vitro Antibody Binding Prediction [Paper] Divya Nori, Simon V Mathis, Amir Shanehsazzadeh	2023
	In GenBio Workshop at the 37th Neural Information Processing Systems (NeurIPS) [Spotlight]	
	In Broad Institute Machine Learning for Drug Discovery Symposium	
	De Novo PROTAC Design Using Graph-Based Deep Generative Models [Paper, Code] Divya Nori, Connor Coley, Rocio Mercado	2022
	In AI4Science Workshop at the 36th Neural Information Processing Systems (NeurIPS)	
	In Broad Institute Machine Learning for Drug Discovery Symposium [Spotlight Talk]	
	Real-Time Intervention Framework for Nicotine Poisoning via Smart E-Cigarette Device [Paper] Divya Nori, Amanda Martinez	2021
	In MIT Undergraduate Research Journal Vol. 42	
	Automated Detection System for Adolescent Prescription Stimulant Overdose [Poster] Divya Nori	2020
	In 9th Southeastern Pediatric Research Conference	
	AI-Based Early Detection Tool to Identify Linguistic Biomarkers of Mood Disorders [Poster] Divya Nori	2020
	In 9th Southeastern Pediatric Research Conference	

SELECTED AWARDS

Eric and Wendy Schmidt Center Funded Research and Innovation Scholar	2023
D.E. Shaw Research Undergraduate Fellowship	2023
Neo Scholar Finalist	2023
MIT EECS Outstanding Undergraduate Research (UROP) Award	2023
Intel International Science & Engineering Fair Grand Award Winner	2021
Regeneron Science Talent Search Scholar	2021

Experience

D.E. Shaw Research | ML Research Intern

May 2024 - Aug 2024

- Developing self-supervised learning frameworks to learn protein-ligand interaction embeddings from large-scale molecular dynamics simulation data for downstream binding affinity prediction
- Adapted the self-distillation with no labels (DINO) method to learn on molecular voxel grids, focusing on generalizable approaches to robustly learn interactions rather than memorizing ligand identity
- Compared our approach to multiple baselines including fingerprint-based methods, graph-based methods, etc.

Broad Institute of MIT and Harvard | Undergraduate Researcher

May 2022 - present

- Working on several projects at the intersection of generative modeling, representation learning, and drug discovery
- **Project 1** [**Ongoing**]: Applying sequence-based ML methods to optimize RNA elements for IRES (internal ribosome entry site) function with *in vitro* validation
- Project 2 [Jan 2023 Jan 2024]: Led the development of conditional flow matching methods for joint RNA structure and sequence design, conditioned on a target protein of interest

Absci | AI Research Intern

May 2023 - Sept 2023

- Trained and evaluated 8 zero-shot scoring models to predict experimental success of AI-designed antibodies, comparing sequence, apo structure, and docked complex-based methods
- Gained experience optimizing training, inference, and batched operations on a high-performance cluster

Microsoft Research | Software Engineering Intern

Jan 2023 - Feb 2023

- Contributed to a tool (ProteinHub) for researchers in the biological sciences to easily access and apply state-of-the-art deep learning models for protein engineering
- Focused on building a generative models module, involving integration of protein structure diffusion models and an autoregressive language model

MIT Scharzman College of Computing | Undergraduate Researcher

Jan
 2022 - Dec2022

- Built a graph-based deep generative model to design protein degrader molecules with predicted potency
- Applied policy-gradient reinforcement learning (RL) using a multi-objective scoring function to promote the design of structures with predicted protein degradation activity

Eli Lilly | Data Science Intern

Jan 2022 - Feb 2022

• Improved automated approach to identify and classify injection site skin reactions by bench-marking scarletred computer vision model against millions of images from Eli Lilly database

SERVICE

Teaching Assitant, Break Through Tech AI Program	May 2024 - present
Reviewer, ICML 2024 AI4Science Workshop	May 2024
Mentor, MIT Women in EECS	Sept 2023 - present
Reviewer, MIT Undergraduate Research Journal	Sept 2021 - present
Teaching Assistant, Intro to Deep Learning (6.S191)	Jan 2024 - Feb 2024