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Introduction

● Cryo-EM is the state-of-the-art technique to determine the 3D structure of 
proteins at high resolution

● The output of a single cryo-EM run is 104 to 107 noisy projection images, all 
taken from unknown random orientations

● Here, we focus on the task of 3D pose estimation of protein electron density 
volume from projection images to investigate the following:

Can we reconstruct protein structure using fewer projection images by 
exploiting symmetries?

● The homogenous, single-particle setting treats a protein as volumetric map    , 
and projection operator     maps      to image 

Related Work

● Current state-of-the-art is CryoFIRE which employs an image-to-pose encoder 
and pose-to-slice decoder, reconstructing the 3D volume using Fourier Slice 
Theorem

● The model is trained using a symmetric loss between projections of the 3D 
model at predicted orientations and ground truth projections
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● Notably, CryoFIRE predicts a single orientation for every projection image, but 
we aim to instead learn a more complex representation of pose from each 
image

● The representation we learn is a probability distribution over orientations in 
SO(3), as done in prior work Image2Sphere

● Image2Sphere exploits 3D object symmetry for pose prediction by projecting 
images onto a half-sphere and performing spherical convolutions 

● The model is trained in a supervised manner using cross entropy loss, inspiring 
our training protocol

Background & Workflow

● Our general workflow involves projecting input images onto a half-sphere and 
training a spherical convolutional neural network to predict a probability 
distribution over SO(3)

● Similar to previous work, our encoder is approximately SO(3) equivariant

● At inference time, the sCNN encoder is used to predict a probability 
distribution for each input image which can be used for reconstruction with 
Fourier Slice Theorem

● Fundamentally, cryo-EM images are highly noisy and the proteins we aim to 
learn symmetries on are complex, requiring specific modifications to the 
training regime
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Data & Label
Generation Model Building Model Training

Synthetic Images
● Using ground truth 3D 

electron density map 
(from PDB), performed 
orthographic 
projection from n 
orientations

● Added Gaussian noise 
and blur

Training Labels
● For each data point, 

initialized a grid over 
SO(3) with bin width 15 
degrees

● Each grid cell contains 
MSE with respect to 
ground truth image 
from that pose

● Generated binary 
mask over spherical 
grid where 1 
represents the largest 
5% of 1/MSE values

Architecture

CN
N

Pr
oj

ec
to

r

sC
N

N

● Featurized 2D 
projection image with 
2 Conv2d layers and 
ReLU activation

● Project featurization 
onto half-sphere using 
depthwise convolution

● Learned spherical 
signal over SO(3) with 
S2 convolution, SO(3) 
activation, and SO(3) 
convolution 

Loss Function
● Used a Binary Cross 

Entropy Loss between 
the predicted 
probability map and 
ground truth 

● Ground truth 
probability mask 
generated by

before bitmasking
●     tuned to produce 

separation between 
similar and dissimilar 
poses to encourage 
learning of symmetries

Hyperparameters
● Model trained for 200 

epochs with learning 
rate of 0.001

● Spherical equivariant 
layers use lmax = 4

● Equivariant methods can be used to learn protein symmetries from 2D images, 
as captured by the relation between rotations before imaging and rotations 
across the probability map

● Although learning against a ground truth probability map is unstable, this can be 
rectified by using binary masks with carefully chosen thresholds

Limitations & Future Work

● Synthetic projection images may provide biased benchmarks; difficult to test on 
real cryo-EM data (petabytes of storage)

● May not generalize to proteins with symmetries not seen during training
● Integrate pose model with reconstruction using Fourier Slice Theorem
● Increase the resolution used for both images and the spherical CNN to improve 

the granularity of predicted probability maps and (eventually) reconstruction

Training ROC: 
AUC = 0.930

Training PR: 
AUC = 0.233

● We trained the model using different 
numbers of projections (50 to 400) 

● The model trained on 400 images for 200 
epochs learns the training data and 
generalizes best

● We quantitatively tested for equivariance, 
and given that both mean and maximum 
MSE is considerably lower with our model 
predictions, our model learns an 
approximately equivariant function 

Mean Min Max

Our Model .0050 .0024 .0075

Random Baseline .0074 .0025 .0144

MSE on equivariance tests
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