CryoSphere: SO(3)-equivariant method for cryo-EM pose estimation

Dev Chheda, Divya Nori [dchheda@mit.edu,](mailto:dchheda@mit.edu) divnor80@mit.edu

Introduction

- Cryo-EM is the state-of-the-art technique to determine the 3D structure of proteins at high resolution
- The output of a single cryo-EM run is 10^4 to 10^7 noisy projection images, all taken from unknown random orientations
- Here, we focus on the task of **3D pose estimation of protein electron density volume from projection images** to investigate the following:

Can we reconstruct protein structure using fewer projection images by exploiting symmetries?

• The homogenous, single-particle setting treats a protein as volumetric map V , and projection operator c maps V to image I

$$
I(r_x, r_y) = g * \int_{\mathbb{R}} V(Rr) dr_z + \epsilon
$$

 $\lceil r_x \rceil$ $V : \mathbb{R}^3 \to \mathbb{R} =$ volumetric map

Related Work

 \mathcal{C}

- Current state-of-the-art is **CryoFIRE** which employs an image-to-pose encoder and pose-to-slice decoder, reconstructing the 3D volume using Fourier Slice Theorem
- The model is trained using a symmetric loss between projections of the 3D model at predicted orientations and ground truth projections

- At inference time, the sCNN encoder is used to predict a probability distribution for each input image which can be used for reconstruction with Fourier Slice Theorem
- Fundamentally, cryo-EM images are highly noisy and the proteins we aim to learn symmetries on are complex, requiring specific modifications to the training regime

 $s: I \mapsto P =$ encoder $s \circ c : V \mapsto P$ **Equivariance condition:**

 $(s \circ c)(RV) = R(s \circ c)(V)$

● Notably, CryoFIRE predicts a single orientation for every projection image, but we aim to instead learn a more complex representation of pose from each

- image
- The representation we learn is a probability distribution over orientations in SO(3), as done in prior work **Image2Sphere**
- Image2Sphere exploits 3D object symmetry for pose prediction by projecting images onto a half-sphere and performing spherical convolutions
- The model is trained in a supervised manner using cross entropy loss, inspiring our training protocol
- $R \in SO(3) =$ unknown pose
	- $g =$ microscope blurring
		- $\epsilon =$ Gaussian noise
- Generated binary mask over spherical grid where 1 represents the largest 5% of 1/MSE values

Background & Workflow

-
- signal over SO(3) with S2 convolution, SO(3) activation, and SO(3) convolution
-
-
- Model trained for 200 epochs with learning rate of 0.001
- Spherical equivariant layers use $\text{Imax} = 4$

- **●** Our general workflow involves projecting input images onto a half-sphere and training a spherical convolutional neural network to predict a probability distribution over SO(3)
- **●** Similar to previous work, our encoder is **approximately SO(3) equivariant**

Methods

Experiments

Conclusions

References

[1] **CryoFIRE**: Levy, A. & Wetzstein, G. & Martel, J. & Poitevin, F. & Zhong, E. (2022). Amortized Inference for Heterogeneous Reconstruction in Cryo-EM. *Neural Information Processing Systems*.

[2] **Image2Sphere**: Klee, D. & Biza, O. & Platt, R. & Walters, R. (2023). Image to Sphere: Learning Equivariant Features for Efficient Pose Prediction. *International Conference on Learning Representations*.

- Equivariant methods can be used to learn protein symmetries from 2D images, as captured by the relation between rotations before imaging and rotations across the probability map
- Although learning against a ground truth probability map is unstable, this can be rectified by using binary masks with carefully chosen thresholds

Limitations & Future Work

- Synthetic projection images may provide biased benchmarks; difficult to test on real cryo-EM data (petabytes of storage)
- May not generalize to proteins with symmetries not seen during training
- Integrate pose model with reconstruction using Fourier Slice Theorem
- Increase the resolution used for both images and the spherical CNN to improve the granularity of predicted probability maps and (eventually) reconstruction
- We trained the model using different numbers of projections (50 to 400)
- The model trained on 400 images for 200 epochs learns the training data and generalizes best
- We quantitatively tested for equivariance, and given that both mean and maximum MSE is considerably lower with our model predictions, our model learns an approximately equivariant function

MSE on equivariance tests

 $Mean$ Min Max