

Efficient-ViT-Guard: Real-Time Face Detection and Blurring System for Video Privacy Dev Chheda, Divya Nori, Anirudh Valiveru

Pervasive video recording and sharing poses privacy concerns

Potential solution: real-time face blurring

MTCNN as face detection model

EfficientViT SAM as face segmentation model

Step 1: Benchmark face detection model

MTCNN as face detection model

EfficientViT SAM as face segmentation model

What do realistic video frames look like?

What do realistic video frames look like?

Experimental methodology

Dataset: Hugging Face Wider Face Dataset

High illumination no occlusion

Low illumination no occlusion High illumination with occlusion

Low illumination with occlusion

Experimental methodology

We compare time efficiency and accuracy of face detection across these settings

High illumination no occlusion

Low illumination no occlusion

High illumination with occlusion

Low illumination with occlusion

RMSE of predicted face location is significantly higher under high occlusion

Low illumination and occlusions decrease time efficiency

Successful example in low illumination setting

Successful example in occluded setting

Step 2: Benchmark face segmentation model

MTCNN as face detection model

EfficientViT SAM as face segmentation model

Low illumination and occlusions don't significantly affect time efficiency

Successful example in low illumination setting

Successful example in occluded setting

Step 3: Integrate into full-stack system

MTCNN as face detection model

EfficientViT SAM as face segmentation model

Efficient-ViT-Guard demo

https://www.youtube.com/watch?v=VTCGm4N-_k8

Takeaways and next steps

- MTCNN and Efficient-ViT SAM can be used to build a fast and reliable face detection/blurring privacy preserving system
- High occlusion affects accuracy of MTCNN, but illumination does not have significant effect
- Occlusion and low illumination together affect the time efficiency of MTCNN and Efficient-ViT SAM
- In general, time efficiency of both models is consistent across conditions

Potential extensions:

- Use optical flow to track faces over several video frames
- Only a single bounding box from user is needed to track and blur a face